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Sociodemographic characteristics 
of missing data in digital 
phenotyping
Mathew V. Kiang1, Jarvis T. Chen2, Nancy Krieger2, Caroline O. Buckee3, 
Monica J. Alexander4,5, Justin T. Baker6,7, Randy L. Buckner8,9,10, Garth Coombs III8, 
Janet W. Rich‑Edwards3,11, Kenzie W. Carlson12 & Jukka‑Pekka Onnela12*

The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an 
unprecedented opportunity for researchers to collect longitudinal, diverse, temporally‑dense data 
about human behavior while minimizing participant burden. Researchers increasingly make use of 
smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data 
to study the lived experiences of subjects in their natural environments using their own devices. 
While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there 
are fundamental gaps in our knowledge about data collection and non‑collection (i.e., missing data) 
in smartphone‑based digital phenotyping. In this meta‑study using individual‑level data from six 
different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting 
to 29,500 person‑days of observation, using Bayesian hierarchical negative binomial regression with 
study‑ and user‑level random intercepts. Sensitivity analyses including alternative model specification 
and stratified models were conducted. We found that iOS users had lower GPS non‑collection than 
Android users. For GPS data, rates of non‑collection did not differ by race/ethnicity, education, age, 
or gender. For accelerometer data, Black participants had higher rates of non‑collection, but rates 
did not differ by sex, education, or age. For both sensors, non‑collection increased by 0.5% to 0.9% 
per week. These results demonstrate the feasibility of using smartphone‑based digital phenotyping 
across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones 
become increasingly embedded in everyday life, the insights of this study will help guide the design, 
planning, and analysis of digital phenotyping studies.

The ubiquity of personal digital devices has resulted in a unique opportunity to collect and analyze unprecedented 
amounts of data, providing researchers with a promise of a more nuanced understanding of human behavior than 
ever before. This trend continues to accelerate as internet-connected personal devices become more prevalent, 
accessible, and embedded in everyday  life1. According to a recent study, over half of the world population has 
internet  access2. Over six billion smartphones are estimated to be in  circulation3, making smartphones the fast-
est growing technology in  history4. In the United States, smartphone ownership is currently estimated at 85%, 
up from just 35% in  20115.

Leveraging the resulting data deluge to understand human behavior in a more granular and precise manner, 
public health researchers have created the field of “digital epidemiology”6,7. Defined as health-related research 
using data generated outside of the health system and for non-health-related research purposes, digital epidemiol-
ogy has advanced our understanding of how health and collective human behavior interact. For example, mobile 
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phone data from telecommunications providers have been used to quantify the impact of human mobility on 
malaria  transmission8, seasonal  dengue9, and access to health  care10. Digital traces from smartphone applications 
have been used to track mobility during the COVID-19  pandemic11. Similarly, social media data have been used 
to predict Zika  incidence12 and city-level influenza emergency department  visits13.

While digital epidemiology focuses on patterns of collective human behavior, the concept of a “digital phe-
notype” to understand individual human behavior was introduced in  201514. We have previously defined the 
creation of a digital phenotype, or digital phenotyping, as “the moment-by-moment quantification of the indi-
vidual-level human phenotype in situ using data from personal digital devices,” in particular  smartphones15–17. 
As with any scientific inquiry, measurement is vital, and these personal digital devices provide an unprecedented 
opportunity for precise measurement of human behavior, at fine spatiotemporal resolution, using existing con-
sumer grade devices across large, diverse samples. This pairing of individual-level data collection and analysis 
creates a nuanced view of the participant’s  daily14 lived experience. The goal of digital phenotyping is to provide 
more precise social, behavioral, and cognitive phenotypes for developing a better understanding of various 
diseases, potentially leading to the establishment of new disease subtypes in fields such as psychiatry and neu-
rology. These more precise phenotypes could enable early and accurate detection of diseases, thus advancing 
the goals of precision medicine, and monitor treatment response in an unobtrusive manner while facilitating 
measurement-based care at  scale16.

While still nascent, digital phenotyping has shown significant promise, especially in the field of mental 
 health18,19. For example, several studies have found a link between individual-level mobility, estimated from 
smartphone GPS sensor data, and depressive  symptoms20. Among schizophrenia patients, digital phenotyping 
has been shown to be acceptable to patients and potentially feasible for use in clinical  practice21, predictive of 
schizophrenic relapse in a small pilot  study22, and capable of providing scalable and affordable sleep  monitoring23. 
Additionally, digital phenotyping has begun to branch out to other areas of population health research: under-
standing the daily behaviors of healthy undergraduate  students24, evaluating the risk of disordered eating among 
women with and without histories of childhood trauma and food insecurity, monitoring patient recovery after 
cancer  surgery25, and providing enhanced medical care within a cohort of patients with advanced  cancer26. How-
ever, researchers have also called for a better understanding of how these data are  collected27, greater emphasis 
on methodology and techniques for analyses of these data rather than just on the collection  itself16, and, as with 
any new area of research, establishing more ethical standards and guidelines for data  collection28.

While many platforms exist for collecting data from smartphones, we focus on studies using Beiwe, an open 
source research platform for smartphone-based digital phenotyping. The development of Beiwe started in 2013, 
and the first version of the platform was introduced in 2016 and is described in detail  elsewhere15. Briefly, Beiwe is 
a scalable, globally deployable, cloud-based data collection and data analysis platform designed for smartphone-
based digital phenotyping in biomedical settings. Some of its distinguishing features are the ability to collect 
raw sensor data rather than pre-packaged data summaries, support for Android and iOS devices, emphasis on 
reproducibility of research through sharing of study configuration files, and full back-end integration with the 
Forest data analysis library that consists of statistical and machine learning methods specifically developed 
for analyzing smartphone data. Beiwe has been released under the 3-clause BSD open source license, which 
enables researchers to modify and expand the capabilities of the platform to meet their own scientific needs 
(Supplementary Information Text S1). Among other features, the platform allows investigators to specify which 
data streams are collected, how frequently they are sampled, and how frequently the data are uploaded to the 
server. Data are encrypted while buffered on the phone awaiting upload, during transit, and while at rest on the 
server. The support for both iOS and Android devices covers an estimated 99% of the U.S. smartphone  market29.

Despite the potential for scalable, affordable, intensive data collection with a beneficial impact on medicine 
and public health, many fundamental questions about digital phenotyping data collection remain unanswered 
at this early stage of the field. For example, previous research has noted differences in smartphone mean dura-
tion of usage by gender and primary purpose of phone usage by  age30. While the demographic differences in 
phone usage are clear, albeit under-researched, it remains unclear how these demographic differences may affect 
levels of missingness in smartphone-based digital phenotyping data collection. This is an important unresolved 
question in the field because missingness in digital phenotyping data can undermine the usefulness of many 
medical or public health applications. Design-based mitigation of missing data is preferable to traditional sta-
tistical approaches that largely ignore the problem (e.g., setting data “quality” thresholds and discarding blocks 
of time with high missingness) or rely on strong assumptions about types of missingness and recording relevant 
observable factors (e.g., statistical modeling). With few exceptions, statistically principled imputation of digital 
phenotyping data does not yet  exists31,32.

Missing data in digital phenotyping can divided into two categories: (1) missingness by design and (2) missing-
ness due to sensor non-collection. Missingness by design is an intended result of the sensor sampling schedule as 
configured by the investigator. For example, to preserve phone battery, at the design stage an investigator might 
configure the GPS sensor to collect data for 1 min every 10 min. In contrast, missingness due to sensor non-
collection results from technological and behavioral factors. For example, a participant may forget to charge 
their phone, disable the GPS, or uninstall the study application. The phone’s operating system may also limit 
sensor access during specific scenarios due to performance considerations. Because the technological factors 
causing sensor non-collection are usually proprietary and therefore unknown to the investigator, identifying 
sensor non-collection and characterizing its extent is crucial so that the investigator, at a minimum, can quan-
tify the resulting additional uncertainty in downstream data analyses, and can also consider imputing missing 
data. For smartphone applications that alternate sensor sampling between an on-cycle (sensor collects data) and 
off-cycle (sensor does not collect data), the expected data volume is known at the design stage, which enables 
one to easily diagnose sensor non-collection. In the above example, collecting data from the GPS sensor every 
10 min for 1 min at a time leads to a regular 10% sampling coverage of any time period, resulting in 2.4 h of 
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data for every 24-h period, for example. While outside the scope of this paper, we note that missingness due to 
sensor non-collection can be further divided into subtypes, such as missing completely at random, missing at 
random, and not missing at random, and distinguishing between these missing data mechanisms is important 
at the data analysis  stage33.

Using individual-level data from six independent studies, this meta-study focuses on sensor non-collection 
and seeks to address four fundamental questions about this type of missingness in digital phenotyping data 
collection from accelerometer and GPS sensors: (1) What is the expected rate of sensor non-collection for 
accelerometer and GPS in digital phenotyping studies? (2) To what extent does the rate of sensor non-collection 
vary over the study period? (3) How are rates of sensor non-collection correlated with phone type (specifically, 
operating system, i.e., Android vs. iOS) or common demographic characteristics of participants, such as gender, 
education, or age? (4) How much does sensor non-collection vary across individuals? As far as we know, this is 
the first systematic investigation of these issues in a cross-diagnostic cohort in digital phenotyping.

Results
In this meta-study, we analyzed the timestamps of accelerometer and GPS measurements collected in six dif-
ferent studies, conducted in 2015–2018, with a combined total of 211 participants (Figs. 1, 2, and S1) using the 
Beiwe Research Platform (Table 1). Measurements from accelerometer and GPS sensors occurred in the same 

0 180 365 540 730 900
Time (days)

Pa
rtic

ipa
nt

Study A

Study B

Study C

Study D

Study E

Study F

Figure 1.  Periods of data collection for each study and each participant. Each horizontal line represents a 
single study participant with the endpoints at the first and last day of observation. Studies varied in number 
of participants, length of observation, and rate of attrition. Each study is represented by a different color. Note 
that because dates of study participation may be considered personally identifiable information, time (x-axis) is 
represented as the number of days relative to the first observation date in our data. All studies occurred between 
2015 and 2018.
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Figure 2.  Proportion of missing observations by participant. Each vertical bar represents the proportion of 
missingness (color) for a single participant for accelerometer (top) and GPS (bottom) data. Participants are 
ordered by the average proportion of missingness. Follow-up was pre-specified in each study protocol based on 
time (i.e., not by the amount of data collected per subject).

Table 1.  Study demographic characteristics. General sociodemographic characteristics of each study 
and across all studies. Studies A, C, E, and F consisted of healthy undergraduate students from Harvard 
College. Study B consisted of patients known to be at risk for mania and psychosis from McLean Hospital in 
Massachusetts. Study D consisted of healthy female nurses from the Nurses’ Health Study 3. In parentheses, 
the Total column shows the row percent relative to the entire sample except for the age row where it shows the 
sample standard deviation of age in years.

Study A Study B Study C Study D Study E Study F Total (%)

Participants, N 16 11 12 59 39 74 211 (100%)

Mean (SD) age, y 19.4 (1.2) 31.5 (9.5) 20.4 (1.5) 41.1 (6.3) 18.4 (0.6) 18.2 (0.7) 25.4 (10.8)

Phone OS, N

Android 0 7 12 40 35 69 163 (77%)

iOS 16 4 0 19 4 5 48 (23%)

Gender, N

Male 4 8 5 0 16 36 69 (33%)

Female 12 3 7 57 23 38 140 (66%)

Missing 0 0 0 2 0 0 2 (1%)

Education, N

High school 16 1 12 0 39 74 142 (67%)

Associates 0 6 0 3 0 0 9 (4%)

Bachelors 0 3 0 36 0 0 39 (18%)

Graduate degree 0 1 0 13 0 0 14 (7%)

Missing 0 0 0 7 0 0 7 (3%)

Race/ethnicity, N

Non-Hispanic White 7 9 9 32 14 46 117 (55%)

Non-Hispanic Black 4 1 2 12 3 9 31 (15%)

Asian 5 1 1 7 14 9 37 (18%)

American Indian 0 0 0 0 0 2 2 (1%)

Other/Hispanic 0 0 0 5 5 5 15 (7%)

Missing 0 0 0 3 3 3 9 (4%)
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individuals on the same phones, but were recorded independently (e.g., if GPS was disabled, accelerometer data 
would continue to be collected). In all, there were over 8.3 billion measurements (8.1 billion individual acceler-
ometer measurements and 113 million GPS individual measurements) collected in over 81 million measurement 
groupings over the course of more than 29,500 person-days of observation (Table S1). For all analyses reported 
in this paper, we used only timestamps of each measurement (i.e., metadata) and not the measurement itself. 
Identifying information, such as GPS coordinates, were not necessary for the objectives of this study and thus 
all sensor measurements were removed before analysis. In addition to timestamps, we collected self-reported 
demographic information about participants in most of these studies (Table 1). These self-reported demographic 
data included gender, age, educational attainment (highest completed degree), and race/ethnicity (non-Hispanic 
White, non-Hispanic Black, Asian, American Indian/Alaska Native, other/Hispanic). Overall, among the 211 
participants, the average age at the beginning of each study was 25.4 years (SD 10.8), most were female (66%), 
most had at most a high school education (67%), and 55% were non-Hispanic White, with the next two most 
common racial/ethnic groups being Asian (17%) and Black (14%). We note that because this is a meta-study, 
some descriptive statistics may have previously been published for individual studies, although none of these 
studies have specifically investigated missing data.

We investigated the role of various sociodemographic characteristics for rates of sensor non-collection using 
Bayesian hierarchical negative binomial models detailed in "Methods". These models account for the correlated 
and nested nature of the data (i.e., observations within participants) and, unlike Poisson regression, allow for 
overdispersion of the data. The conditional average rates of sensor non-collection at the beginning of the stud-
ies were 19.1% (95% credible interval [CI]: 8.9, 45.8) for accelerometer and 26.9% (95% CI: 16.8, 45.9) for GPS 
(Table 2). The rates of sensor non-collection increased over time at approximately 0.5% (95% CI: 0.4, 0.7) per 
week for accelerometer and 0.9% (95% CI: 0.7, 1.0) per week for GPS (Table 2). Participants with iOS devices 
had substantially lower rates of GPS non-collection (RR: 0.66 [95% CI: 0.45, 0.95]) compared to participants 
with Android devices (Fig. 3).

In terms of accelerometer non-collection and demographic characteristics, there was no significant dif-
ference between male and female participants (RR: 0.82 [95% CI: 0.58, 1.17]) or participants with a four-year 
college degree compared to those without (RR: 0.724 [95% CI: 0.33, 1.84]). Similarly, rates of accelerometer 
non-collection did not increase with age (RR: 1.01 [95% CI: 0.97, 1.05]). Compared to White participants, Black 
participants had approximately 64% (95% CI: 5.9, 252) higher rates of accelerometer non-collection, albeit with 
substantial uncertainty. There was no similar difference for Asian participants (RR: 0.72 [95% CI: 0.49, 1.10]), 
American Indian or Alaska Native participants (RR: 1.14 [95% CI: 0.64, 2.05]), or participants of other racial/
ethnic descent (RR: 0.98 [95% CI: 0.23, 4.07]). Unlike accelerometer, there were no statistically significant racial/
ethnic differences in rates of GPS non-collection. There were no differences across any of the demographic char-
acteristics for GPS non-collection: gender, race/ethnicity, education, or age (Table 2 and Fig. 3).

Compared to other model specifications, the selected models provide the best goodness-of-fit while remaining 
parsimonious (Supplementary Information Text S2). Using Bayes  R2, the proposed models explain 38% (95% 

Table 2.  Model results. Model estimates for all parameters for sensor non-collection rates of accelerometer 
(left) and GPS (right). The coefficients and 95% credible intervals (95% CI) have been exponentiated to assist 
interpretation. Parameters with 95% CIs that exclude 1 are in bold. The reference group for education is less 
than 4-year degree and that for race/ethnicity is non-Hispanic White.

Fixed Effects

Accelerometer GPS

e
β (95% CI) SD e

β (95% CI) SD

Intercept 0.191 (0.089, 0.485) 0.435 0.269 (0.168, 0.459) 0.255

Time (weeks) 1.005 (1.004, 1.007) 0.001 1.009 (1.007, 1.010) 0.001

iOS user 1.301 (0.803, 2.114) 0.246 0.660 (0.453, 0.948) 0.188

Male 0.821 (0.576, 1.171) 0.179 0.822 (0.607, 1.106) 0.152

4-year degree or higher 0.786 (0.332, 1.839) 0.437 0.688 (0.339, 1.416) 0.364

Non-Hispanic Black 1.638 (1.059, 2.517) 0.223 1.329 (0.907, 1.953) 0.196

Asian 0.724 (0.486, 1.100) 0.205 0.898 (0.630, 1.295) 0.183

American Indian 1.137 (0.637, 2.047) 0.298 1.241 (0.758, 2.044) 0.255

Other/Multiple 0.978 (0.232, 4.074) 0.727 0.926 (0.257, 3.240) 0.649

Age (10 years) 1.010 (0.973, 1.048) 0.019 1.011 (0.982, 1.042) 0.015

Random Effects SD (95% CI) Groups SD (95% CI) Groups

Level-1: Participant ( σγ) 1.012 (0.911, 1.127) 197 0.888 (0.799, 0.983) 197

Level-2: Study ( σδ) 0.721 (0.222, 1.729) 6 0.295 (0.014, 0.906) 6

Model

Observations (N) 28,218 28,053

Shape ω (95% CI) 0.53 (0.52, 0.54) 0.64 (0.63, 0.65)

Bayes  R2 (95% CI) 0.384 (0.365, 0.403) 0.415 (0.391, 0.439)

WAIC (SE) 430,853.5 (710.8) 216,522.5 (549.5)

LOO (SE) 430,856.1 (710.9) 216,524.8 (549.6)
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CI: 37, 40) of the variance in the rate of accelerometer non-collection and 42% (95% CI: 39, 44) of the variance 
in the rate of GPS non-collection (Table 2). Additionally, individual-level variation was higher than study-level 
variation for both accelerometer ( σγ : 1.012 [95% CI: 0.95, 1.17] vs σδ : 0.721 [95% CI: 0.222, 1.729]) and GPS ( σγ : 
0.888 [95% CI: 0.81, 0.998] vs σδ : 0.295 [95% CI: 0.014, 0.906])) non-collection (Fig. 4).

Discussion
Our results suggest that overall sensor non-collection rates are 19% for accelerometer and 27% for GPS, with 
lower GPS non-collection among iOS users. In general, sensor non-collection did not vary by gender, age, or edu-
cation. Accelerometer non-collection among Black participants is slightly higher relative to White participants, 
and no racial/ethnic differences were observed for GPS non-collection. Importantly, while there is a statistically 
significant temporal trend of increasing sensor non-collection, the size of the effect is small (~ 0.5–0.9% per week) 
and unlikely to be consequential in most studies relative to the baseline level of sensor non-collection. Lastly, we 
find larger variation in the amount of sensor non-collection at the participant-level relative to the study-level.

Our results have important implications for the design and analysis of future digital phenotyping studies. First, 
we show there is a nontrivial level of sensor non-collection across a variety of study settings and demographic 
characteristics. Future research in digital phenotyping needs to account for sensor non-collection through design-
based mitigation such as personal outreach by research staff or incentives for participation, a better qualitative 
understanding of the reasons for sensor non-collection at the individual-level, the continued development of 
additional statistical methods, and more reliance on within-subject over time study designs and data analyses. 
Within-subject analyses and study designs could leverage the observed high adherence, slow increase in sensor 
non-collection, and observed feasibility of long data collection periods.

Some statistical methods have been developed to mitigate the impact of missing data in digital phenotyp-
ing studies, especially for location data. For example, Barnett and  Onnela31, proposed a weighted resampling 
approach, which resulted in a tenfold reduction in error, when compared to traditional linear interpolation, 
across several traditional mobility metrics. More recently, Liu and  Onnela32 introduced a method for imputing 
GPS location traces that uses sparse online Gaussian Process, allowing for continuous, near real time imputation 
of missing data. To our knowledge, no imputation methods exist for raw accelerometer data.

Similarly, researchers should account for the level of sensor non-collection when performing power calcula-
tions and recruiting participants by either recruiting a greater number of participants to offset potential missing 
data or by leveraging within-subject designs and planning for a longer period of follow-up34. The ideal study 
length of follow-up will be determined by the phenomenon under investigation. While some research questions 
may benefit from many participants followed up for brief periods, other research questions may necessitate 
high-density, continuous GPS or accelerometer data collected over long periods of time. In the second case, it 
is often more statistically efficient to utilize a within-subject design with longer follow-up than a wide range of 
participants with limited follow-up. For example, using power calculations designed specifically for digital phe-
notyping based on Beiwe  data34, we found that a smaller cohort of 50 participants followed over 180 days results 

Age (10 years)

Other/Multiple

American Indian
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4-year degree or higher

Male

iOS device

Time (weeks)

Intercept

1/10 1/4 1 4 10
Relative Rate (95% Credible Interval)
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Figure 3.  A forest plot of fixed effect estimates. The fixed effect estimates for accelerometer are in red and 
GPS in blue. Estimates have been exponentiated and can be interpreted as the relative change in sensor non-
collection. The reference group for education is less than 4-year college degree and for race/ethnicity is non-
Hispanic White. In terms of demographic characteristics, Black participants had higher rates of accelerometer 
non-collection compared to White participants; Asian participants had lower rates of accelerometer non-
collection compared to White participants. iOS users had lower rates of GPS non-collection but higher rates of 
accelerometer non-collection, suggesting systematic differences in the phone operating systems of each phone.
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in more statistical power than a larger cohort of 300 participants followed over 30 days (0.80 vs 0.74) despite the 
same number of person-days of observation (Supplementary Information Text S3).

Second, we found substantial individual-level variability in sensor non-collection relative to the study-level. 
This finding suggests that the observed large differences in sensor non-collection are not due to systematic 
study-related issues (e.g., data collection settings, issues with installing the app on participant phones, training 
of research staff on assisting participants with app and privacy settings) but are rather due to high between-
person variability. Consistent with this finding, in alternative model specifications, we found more parsimoni-
ous models without study-level random or fixed effects to be nearly identical to the results presented here. The 
missingness appears to be independent of our measured, common demographic characteristics, and despite 
previously documented differences in smartphone usage (e.g., types of apps used by age or gender)30, it appears 
these differences in usage do not result in differential data collection in our sample. We note that, as with any 
study, there may be unobserved individual characteristics associated with missingness and thus detailed measure-
ment of individual demographic factors is necessary to evaluate how missingness may affect specific outcomes 
of interest. Unmeasured, but likely important, individual-level factors include age or lifetime use of the phone 
and battery, charging habits, leisure activities such as hiking, camping, or other activities with where phone use 
is diminished. Such factors warrant future research.

Our study has several limitations. First, despite a large number of raw data measurements, measurement 
groupings, and person-days of observation, our sample still consisted of only six studies and 211 participants 
from 2015 to 2018. We estimated few statistically significant associations between missingness and demographic 
characteristics, but this finding could potentially be explained by lack of statistical power. This is the largest 
meta-study of digital phenotyping data collection; however, as digital phenotyping studies move beyond the 
pilot stage, similar meta-study approaches to understanding missingness across important sociodemographic 
covariates will continue be necessary. Similarly, the heterogeneity of participants across studies and homogeneity 
within studies may drive some of our findings. For example, 12 of the 33 black participants come from a single 
study of nurses, all of whom self-identified as female and skewed the distribution of gender in our sample. Thus, 
it is possible that our observed increased missingness among black participants is driven, at least in part, by 
occupation-related phone behaviors rather than by race/ethnicity. Differences between Android and iOS may 
be due to differences in the underlying userbase rather than software differences. In particular it appears that 
there may be a large socioeconomic difference between users of iOS and Android devices. Non-scientific market 
surveys have consistently found higher self-reported income among iOS users compared to Android  users35, with 
one recent study reporting annual average salaries of approximately $53,000 and $37,000 for these two groups, 
 respectively36. Previous market research suggests Black Americans are more likely to own Android devices than 
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Figure 4.  Participant-level (left) and study-level (right) random effect estimates for accelerometer (top) and 
GPS (bottom). The dots are the mean random effect estimates and the bars are the 95% credible intervals for 
each participant or study. Credible intervals that include 0 are shaded in grey while those that exclude 0 are 
shaded in black. The values on the y-axis represent the deviation from the overall average rate of sensor non-
collection. There is substantial participant-level variation in missingness, and fairly low study-level variation 
relative to the participant-level variation. In all panels, estimates have been ordered from lowest (i.e., least sensor 
non-collection) to highest (most sensor non-collection) median value. Note that the y-axes differ across the 
rows.
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their White  counterparts37. Fisher’s exact tests found no statistically significant differences between Android 
and iOS users across race/ethnicity or education in our data. Additional models, stratified by device type, show 
qualitatively similar results but large confidence intervals render interpretation of fixed effects inconclusive or 
difficult to interpret (Figure S2). Some subgroups may be more likely to own the latest phone and therefore own 
phones with greater battery capacity. Our models assume the number of missing measurement groupings fol-
lows a negative binomial distribution; however, the observed number of missing measurement groupings has an 
upper limit that may not follow the negative binomial distribution. To test the robustness of our results to this 
“ceiling effect,” we refit the primary model using a Bayesian hierarchical categorical regression, which makes no 
distributional assumptions on the number of missing measurement groupings, and found our results are robust 
to the type of model (Supplementary Information Text S4).

Despite these limitations, we believe our study is informative for future digital phenotyping studies. In sum-
mary, we believe our results indicate digital phenotyping is feasible across a large and diverse sample when 
coupled with careful study design and statistical analysis.

Methods
Data collection. This meta-study used data from six, independent studies. Five of the six studies were con-
ducted in the state of Massachusetts with four studies comprised of undergraduate students at Harvard College 
(Studies A, C, E, and F); one study involved patients known to be at risk for mania and psychosis from McLean 
Hospital (Study B); and one study (Study D) consisted of an all-female subset of medical professionals in the 
Nurses’ Health Study  332 with no diagnosed medical conditions. Study D is based in Massachusetts, but partici-
pants resided in several U.S. states. Each study received institutional review board (IRB) approval from their 
respective institutions for data collection (Table S2); another IRB approved by Harvard University governed the 
secondary analysis of the collected Beiwe data. Common inclusion criteria across all studies were: (1) ability 
to understand the English written consent form, (2) provision of written informed consent, (3) age 18 years or 
older, (4) possession of an Android or iOS smartphone, and (5) willingness to install the Beiwe application on 
their primary personal phone. Additional study-specific inclusion/exclusion criterion are listed in Table S2. In 
addition to obtaining informed consent from all participants, all methods were performed in accordance with 
relevant guidelines and regulations.

Defining measurement groupings. The Beiwe Research Platform allows researchers to specify a sam-
pling schedule separately for each sensor by adjusting the duration of the corresponding on-cycle and off-cycle. 
Using this information, we calculate the expected number of times the application attempts to collect data and 
the expected duration of data collection each day. However, ultimately the phone operating system controls 
data collection during an on-cycle and considers factors such as battery life and computational load when mak-
ing this determination. To account for these design considerations, we aggregated the raw measurements into 
“measurement groupings,” which we defined as chunks of data that were collected within a researcher-specified 
on-cycle and were separated from the next measurement grouping by at least half of the researcher-specified off-
cycle (Table S2; Fig. 2). Conceptually, a measurement grouping is an attempt by the smartphone application to 
collect data over some time interval, and it may have no observations (e.g., GPS was disabled by the participant) 
to several thousand (e.g., accelerometer data collection during a period of physical activity, such as running). 
Therefore, a missing measurement grouping (i.e., one with no observations), or sensor non-collection, could be 
due to (1) power management (e.g., low battery, a higher priority application is running, or high computational 
load); (2) sensor was disabled (e.g., activating airplane mode or deactivating GPS); or (3) the phone is off.

Analysis. We used Bayesian hierarchical negative binomial regression to estimate the rate of sensor non-col-
lection for GPS and accelerometer data. Unlike Poisson regression, negative binomial models allow for modeling 
both the mean and variance separately (i.e., allowing overdispersion), while the hierarchical framework accounts 
for the nested structure of the data (i.e., observations are clustered within users who are clustered within studies 
over time). For each user i in study j , the distribution of the rate of sensor non-collection per day yij is assumed 
to follow a negative binomial distribution. The mean of this distribution µij is estimated as a log-linear function 
of p individual-level covariates X1ij . . .Xpij with a study-specific offset Ej , the expected number of measurement 
groupings per day (a known, fixed value that results from the specification of on-cycle and off-cycle for each sen-
sor). Further, due to the non-independence of daily observations within each user, we allow for a user-specific 
random intercept γ0ij . Lastly, to account for potential clustering within studies, we allow for a study-specific 
random intercept δ0j . The model can be written as

where the negative binomial distribution is parametrized in terms of the mean µij and inverse overdispersion 
parameter ω38. Here α0 is the grand mean across all individuals, δ0j is the study-specific deviation from the 

yij ∼ NegBin(µij,ω)

log
(
µij

)
= log(Ej)+ α0 + β1X1ij + · · · + βpXpij + γ0ij + δ0j

γ0ij ∼ Normal
(
0, σ2γ

)

δ0j ∼ Normal
(
0, σ2δ

)
,



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15408  | https://doi.org/10.1038/s41598-021-94516-7

www.nature.com/scientificreports/

grand mean, and γ0ij is the individual-specific deviation from the study-specific mean. Both the study-level 
and individual-level random effects are assumed to be normally distributed with zero means. The variance 
parameters of the random effects, σ2γ and σ2δ , summarizes the variation in the rate of sensor non-collection at the 
individual- and study-level, after accounting for covariates. In addition, we estimated the fixed effects βp using 
covariates Xpij at the individual level: duration in the study (in days), an indicator variable for operating system 
(iOS vs. Android), self-identified gender (male or female), educational attainment (less than four-year college 
degree or four-year degree and higher), race/ethnicity (non-Hispanic White, non-Hispanic Black, Asian, other 
race/multiple race/Hispanic, or American Indian / Alaskan Native), and age. Sensitivity analyses presented in 
Supplementary Information Text S2 indicate our results are robust to several alternative model specifications.

Models were fit using the No-U-Turn  Sampler39, an efficient, adaptive Hamiltonian Monte Carlo algorithm. 
Specifically, we used the brm() function from the brms  package40 which interfaces with the Stan  library41. All 
parameters were assigned the default brms priors. Specifically, fixed effects were assigned an uninformative, 
improper prior β ∼ Uniform(−∞,+∞) ; the intercept was assigned the diffuse prior α ∼ Student

′

st(3, 6.7, 2.5) ; 
and the standard deviation of the random effects were assigned the diffuse prior σγ ∼ Half − Student

′

st(3, 0, 2.5) . 
All models were fit using eight independent chains. Model convergence was assessed using the rank-normalized-
split-R̂ and rank-normalized-folded-split-R̂ , and the model was considered successfully converged when the 
maximum of both R̂ ≤ 1.01 . To ensure reliable posterior estimates, each chain was run until the Bulk Effective 
Sample Size and Tail Effective Sample Size metrics reached at least 100 samples per chain (Supplementary Infor-
mation)42. We used the widely applicable information criterion (WAIC)43, the asymptotically-equivalent leave-
one-out cross-validation44 with Pareto smoothed importance sampling (LOO)45, and Bayesian R-squared (Bayes 
R2)46 to evaluate model goodness-of-fit, the necessity of random effects components, other nesting structures 
(e.g., observations within users or observations within studies), and other model specifications (Supplementary 
Information Text S2). All analyses were performed in R 4.0.247.

Data availability
While this research use only metadata (e.g., timestamps of GPS pings rather than coordinates), dates of partici-
pant activity can be considered personally identifiable information; therefore, the data cannot be shared publicly. 
Deidentified, metadata used in this meta-study is available upon request, contingent upon appropriate IRB 
approvals or exemptions from participating institutions. While not the raw data, these data will provide sufficient 
information to reproduce our results (e.g., using shifted and/or adding noise to timestamps, re-randomized user 
identifiers). Replication code can be found at https:// github. com/ mkiang/ beiwe_ missi ng_ data or https:// github. 
com/ onnela- lab/ beiwe_ missi ng_ data (Supplementary Information Text S5). The Beiwe platform is open source 
and publicly available (Supplementary Information Text S1).
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